Biochar 101

Heather Nobert Nebraska Forest Service

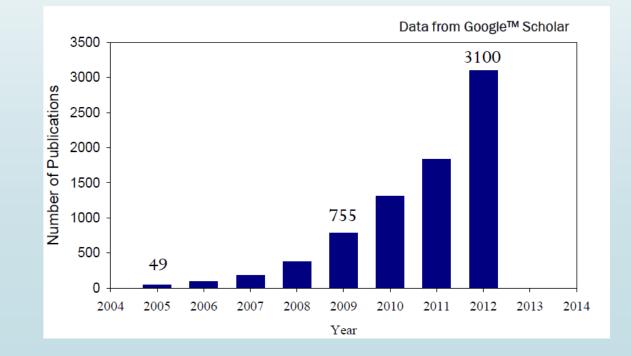
What is Biochar?

Biochar is a solid, carbon-rich material obtained from the carbonization of biomass. It is similar to charcoal in production and composition; its main distinguishing feature is that it is mainly used as a soil amendment while charcoal is mainly used as fuel.

What is it really?

- Solid carbon material
- Produced from organic matter
- Resistant to decomposition
- Unlike charcoal, not used for heating

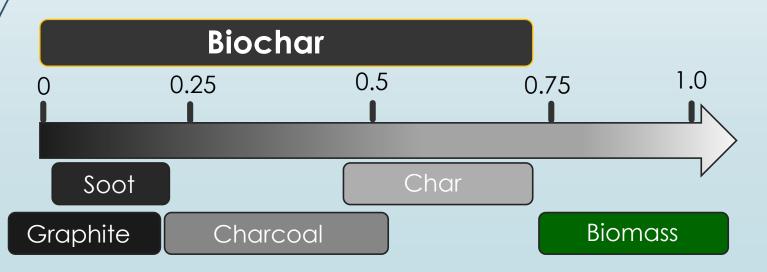
New Purpose, Not a New Material


Biochar history

- Pre-Colombian anthropogenic soils
- 2,500 year history
- Composed of:
 - Cooking and household wastes
 - Manures
 - Bones
 - Darker and richer than typical Amazonian soils

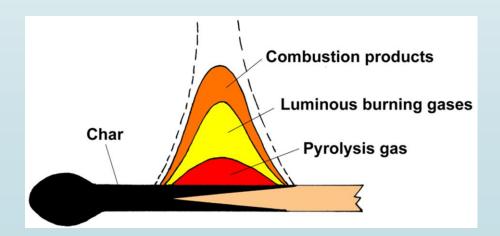
Biochar today

- "Biochar" first used in 1988
- Number of scientific publications steadily increasing
- General term for any number of black carbon products



Black carbon and biochar

Black carbon is a range of solids resulting from thermal conversion of any carbon containing materials

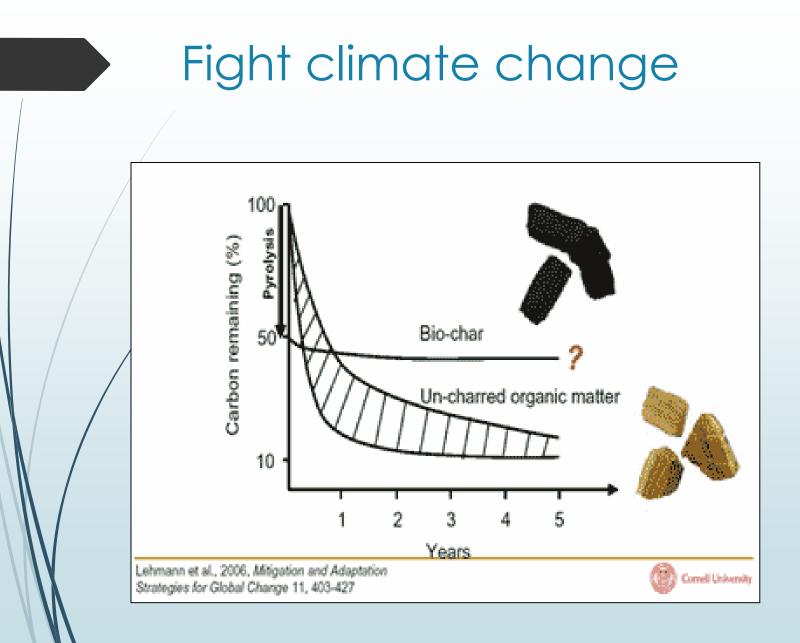

Biochar is NOT a new division or material

Oyxgen to carbon (O:C) molar ratio

How is it produced?

- Pyrolysis or gasification
- Changing the chemical structure of the biomass
- "burn off" volatiles, moisture, etc. left with pure carbon
- Limited oxygen environment
- Very high heat >400°C

What can biochar do?


Fight climate change

- Enhance soil fertility
- Protect water quality

Reduce forestry and agricultural wastes

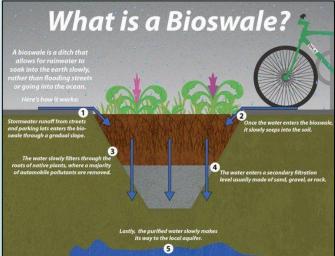
Fight climate change

- Carbon negative
 - Biomass is carbon neutral
 - Biochar acts as a carbon sink
- Persists in soils for decades millennia
- Reduces in-woods and on-farm burning of forestry and agricultural wastes
- May reduce nitrous oxide (N₂0) and methane (CH₄) emissions in agricultural soils

Enhance soil fertility

- Attracts and retains nutrients
 - Increases cation exchange capacity (CEC)
- Stimulates beneficial soil microbiota
 - Biochar pores provide a suitable habitat for microorganisms
 - Soil microbiota are necessary for plant growth and development
- Addition of trace nutrients (Mo, B, S, Cu)
- Improves aerations/bulk density changes

Enhance soil fertility


- Literature reviews reveal that biochar has the higher yield improvements in:
 - Acidic and neutral pH soils (13-14%)
 - Coarse or medium texture soils (10-13%)
- Acts as a liming agent
- Improves water holding capacity of soils

Protect water quality

- Fewer chemical fertilizers are needed
- Reduces fertilizer run-off and leaching
- Water inputs may be reduced as a result of improved soil moisture retention
- Biochar acts as a water filter medium
- >80% of urban streams have 1+ pesticides with concentrations exceeding aquatic life benchmarks (Gilliom, 2007)

Waste reduction

- Creates a valueadded product from forestry and agricultural wastes
- Diverts community wood waste from landfill or burning
- Can be used in-situ or sold for profit

Application methods

- Broadcast and incorporate
- Banding
- Applied while transplanting
- Mixed with topsoil or other amendments in raised beds
- Localized application
- Top dress
- Structural layers

Practical applications of biochar

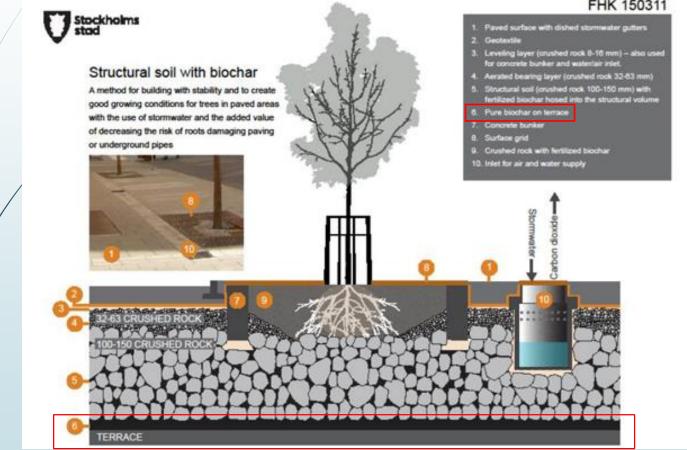
- How will it be applied and incorporated?
 - Manually labor intensive
 - Mechanically expensive
- What is the particle size?
 - Smaller particles dust may be an issue
 - Larger particles not as effective
- Mixing biochar with other substances?
 - Manure, compost, chemical fertilizers, etc.
 - Does this add weight?
 - How much moisture can equipment handle?

Urban trees

- Restrict water and oxygen availability to roots
- Soil compression and compaction
- Urban pollution
- Higher tree mortality
- Shorter lifespans
- Increased maintenance costs

Douglas County Environmental Services

- 2 application methods
- 3 treatments, 1 control
- Year 0 Year 1
 - Improvements in N, Fe, Zn
- Incorporation more effective but more expensive
- Do the benefits of incorporation outweigh the costs?



Stockholm's urban trees

- Stockholm has been testing structured soils for urban tree plantings
- Gravel, peat, sand, clay, biochar
- Biochar resists compression and compaction
- Improves porosity (~40%) to facilitate gas exchange and permeability for root growth
- In some cases, 6 year old trees planted in structured soils with biochar were 5x larger than 30 year old trees planted using traditional methods

The Biochar Journal

FHK 150311

Knowledge gaps

- Properties of biochar resulting from production conditions
- Biochar optimization for soil amendments
- Biochar optimization for non soil amendment uses
- Biochar and biological processes
 - Soil microbes
 - Mycorrhizal fungi interactions
- Effects in differing climatic zones and soil types

Policy challenges

- No product rating system or quality guidelines for biochar
 - "Not all biochar is created equal"
 - Product safety
- No biochar trade association
- Carbon markets??

Parting thoughts

